

Assessment of solar selective absorber coating stability and durability: pertinence of purely thermal aging vs. real concentrated solar aging

Audrey Soum-Glaude¹ ^A, Alex Carling Plaza^{1,2}, Théo Grifo^{1,2}, Martin Bordas^{1,2}, Laurent Dubost³, Laurent Thomas^{1,2}

¹ PROMES-CNRS (Laboratory of PROcesses, Materials, Solar Energy), Perpignan/Font-Romeu Odeillo, France ² University of Perpignan Via Domitia, France ³ HEF-IREIS (Research Institute in Surface Engineering), Saint-Etienne, France

*+33 468 307 747, ¹ <u>Audrey.Soum-Glaude@promes.cnrs.fr</u>, ORCID 0000-0001-7397-9174

Context – Aging and durability of Solar Selective Absorber Coatings (SSACs)

SSACs provide **high optical performance**: high solar absorptance α_s + low thermal emittance $\varepsilon(T)$ to limit radiative losses = high solar-to-heat conversion efficiency. But they are subjected to demanding **working conditions causing their degradation**:

Classical SSACs aging procedures (extensive literature review) are limited: influence of temperature only (purely thermal aging), conservative conditions, etc.

Vadum-CSP project 2017-2021

(French Occitanie Region/European Funds for Regional Development)

- Establish a state of the art on SSACs aging (sources, mechanisms, protocols, facilities)
- Via experimental studies on 3 typical HT SSACs (e.g. PVD TiAIN tandem absorber / IREIS), evaluate the pertinence of classical aging procedures and the need for new ones, including more representative solar aging
- Towards a **standardization** of SSACs durability assessment?

Main results based on experimental aging tests @ PROMES lab

Purely thermal aging in air (electrical furnace)

- At *T_{op}* oxidation beneficial to optical performance:
 aging ≠ degradation
- Acceleration of aging with *T ¬* but non-linearity between optical variation and oxidation *→* multiple aging phenomena with different kinetics (e.g. surface morphology) *→* no lifetime prediction
- Long duration aging to observe these phenomena

Influence of other CSP parameters?

Comparison of purely thermal vs. solar aging conditions

Irradiance levels (kW/m ² = kJ/m ² /s)	Purely thermal aging (electrical furnace)		Solar aging (SAAF 50 kW/m²)		Solar/thermal ratio
/ spectral range	Received	Absorbed	Received	Absorbed	Absorbed
UV (0.28 – 0.4 μm)	_	_	0.55	0.52	∞
Solar (0.28 – 2.5 μm)	0.002	0.001	50	45.3	33000
IR (1 – 25 μm)	10.3	1.8	17.3	13.4	7

Same attainable temperatures but energy/photon flux $\neg \neg$ in solar conditions (esp. w/ SSAC selectivity: high α_s , low ε_{IR}) Additional effects of concentrated solar irradiance?

Real concentrated solar aging in air (solar furnace)

Purely thermal aging vs. solar aging at similar T

- Similar thermally-induced phenomena (oxide growth)
- Acceleration of degradation by solar irradiation (stronger/faster)
- → Additional effects due to high photon flux in solar aging $Irradiance (kW/m^2) = Energy flux (KJ/m^2/s) = Photon flux (photons/m^2/s)$
- \rightarrow Including solar aging in aging strategies highly recommended

Constant vs. cyclic solar aging at similar T

Faster/stronger degradation w/ constant solar aging than cyclic solar aging due to higher $I_{eff} = \frac{I_{max} \cdot t_{max} + I_{min} \cdot t_{min}}{t_{min} + t_{max}}$?

Conclusions and future work

- Aging studies are necessary to ensure stability and durability of solar (selective) absorber coatings for CST receivers
- Purely thermal aging gives relevant information if applied at sufficient temperatures and durations
- Real concentrated solar aging shows accelerating effects at similar T, thus is highly recommended for better representativeness of CST
 These findings could be further explored: longer solar aging durations, irradiance at low T, etc.

Acknowledgments The authors thank for their financial support: the French "Investments for the future" programme managed by the National Agency for Research (ANR) under contracts ANR-10-LABX-22-01-SOLSTICE and ANR-10-EQPX-49-SOCRATE; the ANR through projects ASTORIX (award n°ANR-14-CE05-0015) and NANOPLAST (award n°ANR-19-CE08-0019, <u>nanoplast-project.cnrs.fr</u>); the Occitanie Region and the European Regional Development Fund (FEDER) through Vadum-CSP project; the EU H2020 Research and Innovation Programme through SFERA III Project (GA No 823802); the Indo-French Center for the Promotion of Advanced Research (CEFIPRA) through project n°5908-1. The authors thank C. Escape, Y. Gorand, E. Hernandez, R. Garcia, T. Pouit and S. Fabert for their help.